Article ID Journal Published Year Pages File Type
6745488 Fusion Engineering and Design 2016 8 Pages PDF
Abstract
The objective of the present paper is to provide first hand experimental data and analysis on the low cycle fatigue (LCF) performance of a commercial heat of Indian reduced activation ferritic-martensitic (IN-RAFM) steel. Since this material is not yet codified in RCC-MR, cyclic properties were generated for the design of the structural material of the Test Blanket Modules (TBM) made of RAFM steel. Hence, as a part of the material development program, LCF experiments were conducted on IN-RAFM steel obtained in the normalized and tempered condition. Total axial strain controlled experiments were performed in air by employing strain amplitudes ranging from ±0.25 to ±1.0% and at temperatures of 300, 673, 723, 823, and 873 K and a nominal strain rate, 3 × 10−3 s−1. In the present work, various cyclic parameters that are useful for the design oriented fatigue analysis are derived as per the systematic procedure given in the RCC-MR design code. The physical significance of each design parameter such as elasto-plastic corrections based on Neuber analysis has been explained and correlated with the material behavior such as the cyclic softening nature of the RAFM steel.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , ,