Article ID Journal Published Year Pages File Type
6746402 Fusion Engineering and Design 2013 4 Pages PDF
Abstract
The In-Vessel Components (IVC) for the Wendelstein 7-X stellarator at the Institute for Plasma-Physics (IPP), to be installed for the initial phase of operation, are nearing completion and a significant fraction of the components was delivered in 2011 and 2012. Due to the considerable amount of different components including many variants, the timely realization required a comprehensive management approach, not only covering the demanding technology and system requirements, but also coordination, planning and control issues. A variety of tools were set up to address the technical, financial and timescale challenges. The implementation of this comprehensive management approach is illustrated by the production of the water-cooling system of the IVC. Careful design and manufacture of these components is needed to fulfil the cooling function under high vacuum conditions within very restricted available space. The evolution of the complexity of these components together with changes of boundary conditions had to be managed, integrated into the overall project planning and adequately resourced.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , , , , , , ,