Article ID Journal Published Year Pages File Type
674706 Thermochimica Acta 2010 8 Pages PDF
Abstract

N,N,N′,N′-tetra(3-aminopropyl)-1,6-diaminohexane (TADH), a nonlinear multifunctional polyamine, was prepared and employed as a novel hardener for diglycidyl ether of bisphenol A (DGEBA). Nonisothermal reactions of DGEBA/TADH were systematically investigated with differential scanning calorimetry (DSC). According to the Málek method, the two-parameter Šesták–Berggren model was selected to simulate the reaction rate with a good match achieved, and a correlation of effective activation energies Eα with fractional conversion α was determined with the mode-free isoconversional Vyazovkin method. As α rose, Eα reduced quickly from ∼65 to 57 kJ/mol up to α ≈ 15%, then decreased slowly to ∼50 kJ/mol till α ≈ 75%, and finally dropped to ∼30 kJ/mol at full conversion. In addition, analysis of thermal stability of the cured DGEBA/TADH with thermogravimetric analysis (TGA) revealed that it possessed quite good thermal stability and increased residual char content at 600 °C in nitrogen. Furthermore, dynamic mechanical analysis (DMA) of the DGEBA/TADH network showed its relaxations were characterized by localized motions of hydroxyl ether segments (β relaxation) and cooperative motions of whole network chains (glass relaxation) at different temperature regions.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , , ,