Article ID Journal Published Year Pages File Type
6748356 International Journal of Solids and Structures 2018 40 Pages PDF
Abstract
In this paper, the hereditariness of aging materials is modeled within the framework of fractional calculus of variable order. A relevant application is made for the long-term behavior of concrete, for which the creep function is evaluated with the aid of Model B3. The corresponding relaxation function is derived through the Volterra iterated kernels and a comparison with the numerically-obtained relaxation function of Model B3 is also reported. The proposed fractional hereditary aging model (FHAM) for concretes leads to a relaxation function that fully agrees with the well-established Model B3. Furthermore, the FHAM takes full advantage of the formalism of fractional-order calculus to yield semi-analytic expressions in terms of material parameters.
Keywords
Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , , ,