Article ID Journal Published Year Pages File Type
6749021 International Journal of Solids and Structures 2014 14 Pages PDF
Abstract
A computationally economic finite-element-based approach has been developed to predict the stress-strain and fracture behaviour of an 8-Harness satin woven ceramic matrix composite with strain-induced damage. The finite element analysis utilises a solid element to model the behaviour of the homogenised orthotropic uni-directional tow and its matrix. The underpinning models of the tow and matrix, (Tang et al., 2009) capture the physics of the interactions between fibres and matrix; and, in this way, permit modelling that bridges the length scales of the fibres and full-scale components. The non-linear multi-axial stress-strain behaviour of the composite has been discretised by multi-linear elastic curves; and the latter has been used as input to a user defined subroutine, UMAT, in the commercial finite element package, ABAQUS. A partial unit cell model has been constructed of the 8-Harness satin weave composite of carbon fibres embedded in an amorphous carbon matrix, HITCO C/C. Predictions of the global stress-strain curve, which include the effects of fibre waviness, have been made for two failure modes: the first by deformation localisation, and the second by dynamic tow failure on fibre fracture, triggered by instantaneous pull-out deactivation. Comparisons have been made between the predictions and experimental data that exhibit two classes of fracture behaviour: brittle and quasi-ductile. The predicted results, both with and without tow waviness, compare well with the experimental data; however, the predictions for waviness are slightly better. The two extremes of experimental behaviour have been found to correspond with the two tow fracture criteria modelled.
Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,