Article ID Journal Published Year Pages File Type
6749039 International Journal of Solids and Structures 2014 62 Pages PDF
Abstract
Kinematics and statics of tensegrities are addressed by means of a novel algebraic formulation. The inequality constraints, associated to cable-type unilateral structural members, are explicitly enforced in the equilibrium and compatibility problems. Fundamental tensegrity properties (rigidity, pre-stressability, and stability) are focused by a novel structural perspective and algebraic criteria for their assessment are established. Some classical results are generalized to the case of tensegrity models involving both deformable and non-deformable structural members. An operative algorithm for the analysis of the large-displacement elastic tensegrity response is proposed, not limited by special requirements in terms of structural symmetries or member connectivity, and therefore resulting a general design tool. Exemplary applications highlight the effectiveness of the proposed approach for designing tensegrity structures endowed with smart global behavior related to the optimal tuning of structural stiffness.
Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , ,