Article ID Journal Published Year Pages File Type
6749498 International Journal of Solids and Structures 2012 9 Pages PDF
Abstract
A semi-infinite Mode III crack is embedded in the lattice and, for the considered antiplane deformation, each node has three degrees of freedom, namely, the displacement parallel to the crack front and two rotations about the axes perpendicular to this direction. The analysis method hinges on the discrete Fourier transform, which allows to formulate the crack problem by means of the Wiener-Hopf equation. Its solution yields closed-form analytical expressions for the forces and the displacements at any cross-section, and, in particular, at the crack plane. An eigensolution for the traction-free crack faces and K-field remote loading is derived from the solution for the loaded crack using a limiting procedure. An analytical expression for the fracture toughness is derived from the eigensolution by comparing the remote stress field and the stresses in the near-tip struts. The obtained expression is found to be consistent with the known analytical and experimental results for Mode I deformation. It appears, that the dependence of the fracture toughness upon shape anisotropy ratio of the lattice material is non-monotonic. The optimal value of this parameter, which provides the maximum crack arresting ability is determined.
Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
,