Article ID Journal Published Year Pages File Type
675058 Thermochimica Acta 2009 5 Pages PDF
Abstract

The solubility of carbon dioxide in room temperature ionic liquids (RTILs), dialkylimidazolium dialkylphosphates, was measured at 313–333 K and at pressures close to atmospheric pressure, from which Henry's law coefficients, standard Gibbs free energy, enthalpy, and entropy changes of solvation were derived. The CO2 solubility in the dialkylimidazolium dialkylphosphate was found to increase with increasing chain length of the alkyl groups on the cation and/or the anion as was similarly found in other RTILs. Among various dialkylimidazolium dialkylphosphates tested, 1-ethyl-3-methylimidazolium diethylphosphate ([EMIM][Et2PO4]) and 1-butyl-3-methylimidazolium dibutylphosphate ([BMIM][Bu2PO4]) exhibited the comparable or better capability of dissolving CO2 in comparison with that of [BMIM][BF4], but their absorption capacities were still lower than that of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][Tf2N]).

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , , , , , ,