Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6751037 | Journal of Constructional Steel Research | 2018 | 12 Pages |
Abstract
Pitting corrosion poses a threat to plated steel structures serving in aggressive corrosion environments. This paper involves numerical studies on the structural behaviour and ultimate strength reduction of plated steel structures due to random pitting damage. Stochastic simulations were used to model the random nature of the pitting corrosion varying pitting shape, depth and distribution. A series of nonlinear analyses were performed on unstiffened plates and stiffened panels to understand the mechanisms of structural collapse due to random pitting damage. Empirical formulae were derived respectively for the prediction of ultimate strength reductions of unstiffened plates and stiffened panels in terms of regression analysis from the numerical results. Random pitting corrosion induces a variation and reduction in ultimate strength, and can lead to a transition in failure mode. The collapse of pitted structures under uniaxial compression has a feature that the onset of plasticity initiates in the areas close to the unloaded edge of the structure, and propagates into a continuous plasticity region linking the pits with highly concentrated stress. The pitted area with intensively stress-concentrated pits undergoes a locally amplified deformation that determines the failure mode, leading to structural failure.
Related Topics
Physical Sciences and Engineering
Engineering
Civil and Structural Engineering
Authors
Renhua Wang, R. Ajit Shenoi, Adam Sobey,