Article ID Journal Published Year Pages File Type
6752416 Journal of Rock Mechanics and Geotechnical Engineering 2018 16 Pages PDF
Abstract
The aim of this study is to identify the influence of the dip angle of a pre-existing macrocrack on the lifetime and ultimate deformation of rock-like material. Prediction of lifetime has been studied for three groups of specimens under axial static compressive load levels. The specimens were investigated from 65% to 85% of UCS (uniaxial compressive strength) at an interval of 10% of UCS for the groups of specimens with a single modelled open flaw with a dip angle to the loading direction of 30° (first group), at an interval of 5% of UCS increment for the groups of specimens with single (second group), and double sequential open flaws with a dip angle to the loading direction of 60° (third group). This study shows that crack propagation in specimens with a single flaw follows the same sequences. At first, wing cracks appear, and then shear crack develops from the existing wing cracks. Shear cracking is responsible for specimen failure in all three groups. A slip is expected in specimens from the third group which connects two individual modelled open flaws. The moment of the slip is noticed as a characteristic rise in the axial deformation at a constant load level. It is also observed that axial deformation versus time follows the same pattern, irrespective of local geometry. Specimens from the first group exhibit higher axial deformation under different load levels in comparison with the specimens from the second and third groups.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
, ,