Article ID Journal Published Year Pages File Type
675347 Thermochimica Acta 2008 6 Pages PDF
Abstract

Controlled rate thermal analysis (CRTA) of a series of synthetic aurichalcite (Zn,Cu2+)5(CO3)2(OH)6 with the ratio of Cu/Zn varying from 0.1 to 0.5 proves that the dehydroxylation and carbonate loss occur as non-isothermal and isothermal decompositions. The temperature of the thermal decomposition increases as the Cu/Zn ratio increases. Thermal decomposition of aurichalcite provides a method for preparing mixed oxide catalysts at the molecular level as opposed to the particle level.CRTA technology enables separation of the processes of dehydration, dehydroxylation and decarbonation. X-ray diffraction of the products of the thermal decomposition proved to be a mixture of the oxides ZnO and Cu2O.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , , , , ,