Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6754110 | Journal of Sound and Vibration | 2018 | 20 Pages |
Abstract
A prediction model of roughness noise generated by bluff body flow at high Reynolds numbers is proposed. Howe's roughness noise theory extended by Liu and Dowling is used, and the boundary layer inputs to the theory have been modified for a bluff body. The scattering due to the bluff body has been accounted for by the boundary element method. The procedure to couple the roughness noise sources to the tailored Green's function is detailed for the case where the boundary element method mesh is orthogonal and aligned with the boundary layer outer velocity. The proposed method has been implemented and compared to experimental results for the particular case of a circular cylinder with large roughness. Two different estimations of the skin friction, which is an input to the roughness noise theory, are considered. One is a zero-pressure gradient model, and the second is based on published experimental data of the skin friction on a rough circular cylinder, but with smaller roughness than was used in the experiments. The zero-pressure gradient skin friction estimate leads to a better prediction of the effect of changes in the area covered by roughness elements. The success of the zero-pressure gradient skin friction estimate is encouraging as the only modifications that need to be made to the boundary layer model to account for a bluff body are the boundary layer outer velocity distribution and the location of separation.
Related Topics
Physical Sciences and Engineering
Engineering
Civil and Structural Engineering
Authors
Antoni Alomar, David Angland, Xin Zhang,