Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6754930 | Journal of Sound and Vibration | 2016 | 21 Pages |
Abstract
The characterisation of the magnetic anisotropy shows that it can be quantified as magnetic eccentricities having an amplitude and a phase, which result in linear and parametric excitation. The magnetic eccentricities are also determined using the steady-state response of the rotor-bearing system due to forcing from the magnetic anisotropies and several levels of mass imbalance. Discrepancies in the results from the two methods in terms of magnetic eccentricity magnitude are due to additional geometric eccentricities in the shaft. The steady-state system response shows clear nonlinear phenomena, e.g. bent resonance peaks, jump phenomena and nonlinear cross-coupling between the two orthogonal directions, especially during counter-phase motion between shaft and bearings. The clear nonlinear behaviour is facilitated by the lack of damping resulting in relatively large vibrations. The overall nonlinear dynamic behaviour is well captured by the theoretical model, thereby validating the modelling approach.
Related Topics
Physical Sciences and Engineering
Engineering
Civil and Structural Engineering
Authors
Søren Enemark, Ilmar F. Santos,