Article ID Journal Published Year Pages File Type
675598 Thermochimica Acta 2007 10 Pages PDF
Abstract

The dehydration kinetics of equilibrium swollen poly (acrylic acid) hydrogel is analyzed by both model-fitting and model-free approaches. The conventional model-fitting approach assuming a fixed mechanism throughout the reaction and extract a single values of the apparent activation energy (Ea) and pre-exponential factor (A) and was found to be too simplistic. The values of Arrhenius parameters obtained in such a way are in fact an average that does not reflect changes in the reaction mechanism and kinetics with the extent of conversion. The model-free approach allows for a change of mechanism and activation energy, Ea, during the course of a reaction and is therefore more realistic. The complexity of the dehydration of poly (acrylic acid) hydrogel is illustrated by the dependence of Ea and A on the extent of conversion, α (0.05 ≤ α ≤ 0.98). Under non-isothermal conditions, Ea decreases with α for 0 ≤ α ≤ 0.50, followed by an approximately constant value of Ea during further dehydration. For 0 ≤ α ≤ 0.50, dehydration is complex, which probably involving a combination of several processes. In the constant-Ea region, non-isothermal dehydration follows the three-dimensional phase boundary model (R3). The complex hydrogen-bond pattern in poly (acrylic acid) hydrogel is probably responsible for the observed dehydration behavior. An existence of compensation effect is accepted and explanation of compensation effect appearance during the hydrogel dehydration is suggested.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,