Article ID Journal Published Year Pages File Type
6760198 Nuclear Engineering and Design 2016 9 Pages PDF
Abstract
A severe accident in Fukushima occurred on March 11, 2011 and units 1, 2 and 3 were damaged severely. A tsunami following an earthquake made the supply of electricity power stop, and the safety systems, which use AC or DC power in plants could not operate properly. It is supposed that the degree of core degradation of unit 2 is less serious than in the other plants, and it was estimated that the operation of reactor core isolation cooling (RCIC) system at the initial stage of the accident minimized the core damage through decay heat removal. Although the operating conditions of the RCIC system are not known clearly, it can be important to analyze the accident scenario of unit 2. In this study, best case of the Fukushima unit 2 accident was presented considering the operating conditions of the RCIC system. The effects of operating condition on core degradation and fission product release rate to environment were also examined. In addition, importance of torus room flooding level in the accident analysis was discussed. MELCOR 1.8.6 was used in this research, and the geometries of plant and operating conditions of safety system were obtained from TEPCO through OECD/NEA BSAF Project.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , , ,