Article ID Journal Published Year Pages File Type
6761312 Nuclear Engineering and Design 2015 11 Pages PDF
Abstract
The present paper describes the capability of an air cooling system (ACS) to remove decay heat from a core of LWR such as an advanced boiling water reactor (ABWR) and a pressurized water reactor (PWR). The motivation of the present research is the Fukushima severe accident (SA) on 11 March 2011. Since emergency cooling systems using electricity were not available due to station blackout (SBO) and malfunctions, many engineers might understand that water cooling was not completely reliable. Therefore, a passive decay heat removal (DHR) system would be proposed in order to prevent such an SA under the conditions of an SBO event. The plant behaviors during the SBO are calculated using the system code NETFLOW++ for the ABWR and PWR with the ACS. Two types of air coolers (ACs) are applied for the ABWR, i.e., a steam condensing air cooler (SCAC) of which intake for heat transfer tubes is provided in the steam region, and single-phase type of which intake is provided in the water region. The DHR characteristics are calculated under the conditions of the forced air circulation and also the natural air convection. As a result of the calculations, the decay heat can be removed safely by the reasonably sized ACS when heat transfer tubes are cooled with the forced air circulation. The heat removal rate per one finned heat transfer tube is evaluated as a function of air flow rate. The heat removal rate increases as a function of the air flow rate.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, ,