Article ID Journal Published Year Pages File Type
676138 Thermochimica Acta 2006 5 Pages PDF
Abstract

TiO2/InN (In/(Ti + In) = 6.5:100 mol) was prepared by nitridation of TiO2/In2O3 by NH3 at 580 °C for 8 h. Only the anatase TiO2 phase was detected in the XRD measurements. The highly dispersed InN clusters on the surface of anatase TiO2 nanocrystals were beyond the detection limit of XRD. In order to confirm the existence of InN in the products of nitridation, thermogravimetry–differential scanning calorimetry–mass spectrometry (TG–DSC–MS) coupling techniques were used for a simultaneous characterizing study of the changes of mass, enthalpy and determination of the evolved gases during the thermal decomposition of the InN and the nitrided TiO2/In2O3 samples. Moreover, pulse thermal analysis (PulseTA) was combined with TG–DSC–MS for the quantitative calibration of the evolved nitrogen formed during the thermal decomposition of the InN and the nitrided TiO2/In2O3. The applied technique enabled identification and quantification of the InN in the products of the nitridation of TiO2/In2O3.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , , , ,