Article ID Journal Published Year Pages File Type
6761889 Nuclear Engineering and Design 2014 7 Pages PDF
Abstract
The pressurized heavy water reactor (PHWR) contains both inherent and engineered safety features that help the reactor become resistant to severe accident and its consequences. However in case of a low frequency severe accident, despite the safety features, procedural action should be in place to mitigate the accident progression. Severe accident analysis of such low frequency event provides insight into the accident progression and basis to develop the severe accident management guidelines (SAMG). Since the order of uncertainty in the progression path of severe accident is very high, it is necessary to study the consequences of the SAMG actions prescribed. The paper discusses severe accident analysis for large PHWRs for multiple failure transients involving a high pressure scenario (initiation event like SBO with loss of emergency core cooling system and loss of moderator cooling). SAMG actions prescribed for such a scenario include water injection into steam generator, calandria vessel or calandria vault at different stages of accident. The effectiveness of SAMG actions prescribed has been investigated. It is found that there is sufficient time margin available to the operator to execute these SAMG actions and the progression of severe accident is arrested in all the three cases.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , ,