Article ID Journal Published Year Pages File Type
6762891 Nuclear Engineering and Design 2013 8 Pages PDF
Abstract
Pool boiling from the underside of flat, downward-facing patch is important in analyzing possible accident scenarios related to nuclear power generation. Significant deterioration in heat transfer may occur in stationary film boiling leading to high wall temperatures. In the present work, we have studied, experimentally and through computational fluid dynamics simulations, the nature of the bubbles that are formed at a hot patch. Noting that large, flattened bubbles can be formed at a heated surface, we develop a heat transfer-only model which takes into account the conduction within the plate and the convective and boiling heat transfer to the surrounding liquid medium. It is shown that the safe heat flux, beyond which significant wall temperature rise may occur, is very small compared the critical heat flux for thick plates made of poorly conducting materials. A dimensionless correlation is proposed to calculate the safe heat flux.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, ,