Article ID Journal Published Year Pages File Type
6763048 Nuclear Engineering and Design 2013 12 Pages PDF
Abstract
During a severe accident, the core melt relocates in the lower head and a hemispherical narrow gap may appear between the crust and the lower head because of the different material expansion ratio. The existence of this gap is very important to the integrity of the lower head. Based on the counter current flow limitation (CCFL) between the vapor phase and the liquid phase, a CHF model was developed to predict the CHF in hemispherical narrow gap. The CHF model developed was validated by the test data of Park and Köhler. The effect of key parameters, including the system pressure, radius of melt, and gap size, on the CHF were investigated. And the TMI-2 accident was also calculated by using the CHF formula. Moreover, based on the interface separation model, an analytical CHF model was developed to predict the CHF on the outer surface of the lower head. The predicted CHF was compared with the experimental data of ULPU-V. It indicated that the CHF models developed for the inner and outer CHF could predict the CHF well.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , , , , ,