Article ID Journal Published Year Pages File Type
6763108 Nuclear Engineering and Design 2013 14 Pages PDF
Abstract
Linear soil-structure interaction (SSI) analysis seems to be well understood nowadays and can be performed, for example, by convenient combined asymptotic method (CAM). However, CAM is asymptotically accurate for rigid base mats only - this is a limitation. So, the additional research is needed to find out (a) what is the impact of the base mat's flexibility to the seismic response; (b) how can one account for this impact using the conventional tools. In the first part of the paper a sample “wave” solution is obtained in the frequency domain using SASSI2000 code, without CAM at all. Different formats of the seismic response (e.g., in-structure response spectra, soil-structure interaction forces, in-structure internal forces) have proved to have different sensitivity to the base mat's flexibility. In the second part of the paper this wave solution is a benchmark for the different “platform” models with “soil” springs and dashpots distributed over the base mat (this is a broad definition of Winkler type model). Different shapes of distribution, starting from the conventional Winkler's flat shape and up to the “optimal” shape, are compared to each other in the second part of the paper. It is shown that even the most advanced “shaped” models of the Winkler type are limited in their ability to reproduce seismic response in the most sensitive format - the internal forces in the mat. This is the result of (a) local nature of Winkler's model, and (b) frequency independence of its' parameters.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
,