Article ID Journal Published Year Pages File Type
6763382 Nuclear Engineering and Design 2013 10 Pages PDF
Abstract
Ex-vessel termination of accident progression in Swedish type Boiling Water Reactors (BWRs) is contingent upon efficacy of melt fragmentation, quenching, solidification and formation of a coolable by natural circulation porous debris bed in a deep pool of water below reactor vessel. When liquid melt reaches the bottom of the pool it can cause formation of agglomerated debris and “cake” regions, which affect hydraulic resistance and thus coolability of the bed. This paper discusses development and validation of conservative-mechanistic and best estimate approaches to quantifying mass fractions of agglomerated debris at given conditions of melt release from the vessel. Fuel-coolant interaction (FCI) code VAPEX-P is used as a computational vehicle for modeling. Experimental data from the DEFOR-A (Debris Bed Formation and Agglomeration) tests with binary oxidic simulant material melt is used for validation of developed methods. The paper discusses the influence of different inherent uncertainties in the prediction of the fraction of agglomerated debris.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, ,