Article ID Journal Published Year Pages File Type
6765732 Renewable Energy 2016 14 Pages PDF
Abstract
This paper introduces a novel control approach to maximizing the output energy of an adjustable slope angle wave energy converter (ASAWEC) with oil-hydraulic power take-off. Different from typical floating-buoy WECs, the ASAWEC is capable of capturing wave energy from both heave and surge modes of wave motions. For different waves, online determination of the titling angle plays a significant role in optimizing the overall efficiency of the ASAWEC. To enhance this task, the proposed method was developed based on a learning vector quantitative neural network (LVQNN) algorithm. First, the LVQNN-based supervisor controller detects wave conditions and directly produces the optimal titling angles. Second, a so-called efficiency optimization mechanism (EOM) with a secondary controller was designed to regulate automatically the ASAWEC slope angle to the desired value sent from the supervisor controller. A prototype of the ASAWEC was fabricated and a series of simulations and experiments was performed to train the supervisor controller and validate the effectiveness of the proposed control approach with regular waves. The results indicated that the system could reach the optimal angle within 2s and subsequently, the output energy could be maximized. Compared to the performance of a system with a vertically fixed slope angle, an increase of 5% in the overall efficiency was achieved. In addition, simulations of the controlled system were performed with irregular waves to confirm the applicability of the proposed approach in practice.
Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , , , , , ,