Article ID Journal Published Year Pages File Type
6765832 Renewable Energy 2016 16 Pages PDF
Abstract
The parabolic trough collector is an important component of parabolic trough solar thermal power generation systems. Coordinate transformations and the Monte Carlo Ray Trace (MCRT) method were combined to simulate the circumferential flux distribution on absorber tubes. The simulation model includes the optics cone with non-parallel rays, geometric concentration ratios (GCs), the glass tube transmissivity, the absorber tube absorptance and the collector surface reflectivity. The mode is used to analyze the effects of absorber tube installation errors and reflector tracking errors. The results are compared with reference data to verify the model accuracy. Influences of installation and tracking errors on the flux distribution are analyzed for different errors, incident angles and GCs. For a GC of 20 and 90° rim angle, X direction installation errors are −0.2%∼0.2%, Y direction installation errors are −1.0%-0.5%, and the tracking error should be less than 4 mrad. As the incident angle increases, the errors become larger, but the errors become smaller as concentration ratios are increased. The results provide foundations for heat transfer analysis of the absorber tube, for parabolic trough plant to ensure the safe intensity, and for economic analysis of the installation process and control system.
Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , , , ,