Article ID Journal Published Year Pages File Type
6765879 Renewable Energy 2016 8 Pages PDF
Abstract
A sulfated zirconia catalyst has been prepared by a novel one-pot vapor-controlled synthesis route using ammonium persulphate as sulfate agent. A possible formation mechanism of the catalyst is proposed. The effect of calcination temperature and S/Zr molar ratio on the structural, textural and catalytic properties of the prepared catalyst were investigated in detail using X-ray diffraction (XRD), N2 adsorption-desorption, ammonia temperature programmed desorption (NH3-TPD), Fourier transform infrared spectroscopy (FTIR) and a scanning electron microscope (SEM) which was equipped with an energy dispersive spectroscope (EDS). The results indicated that the samples calcined at 500 °C possessed zirconia of pure tetragonal structure, more content of sulfur and better distribution of acid sites on the surface of zirconia compared with the samples calcined at 600  °C at fixed S/Zr molar ratio. Moreover, they showed excellent catalytic activity with 100% yields of biodiesel for the transesterification of soybean oil with methanol.
Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , , , ,