Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6766358 | Renewable Energy | 2016 | 12 Pages |
Abstract
Planetary gearbox fault diagnosis under nonstationary conditions is important for many engineering applications in general and for wind turbines in particular because of their time-varying operating conditions. This paper focuses on the identification of time-varying characteristic frequencies from complex nonstationary vibration signals for fault diagnosis of wind turbines under nonstationary conditions. We propose a time-frequency analysis method based on the Vold-Kalman filter and higher order energy separation (HOES) to extract fault symptoms. The Vold-Kalman filter is improved such that it is encoders/tachometers-free. It can decompose an arbitrarily complex signal into mono-components without resorting to speed inputs, thus satisfying the mono-component requirement by the HOES algorithm. The HOES is then used to accurately estimate the instantaneous frequency because of its high adaptability to local signal changes. The derived time-frequency distribution features fine resolution without cross-term interferences and thus facilitates extracting time-varying frequency components from highly complex and nonstationary signals. The method is illustrated and validated by analyzing simulated and experimental signals of a planetary gearbox in a wind turbine test rig under nonstationary running conditions. The results have shown that the method is effective in detecting both distributed (wear on every tooth) and localized (chipping on one tooth) gear faults.
Related Topics
Physical Sciences and Engineering
Energy
Renewable Energy, Sustainability and the Environment
Authors
Zhipeng Feng, Sifeng Qin, Ming Liang,