Article ID Journal Published Year Pages File Type
6767731 Renewable Energy 2015 7 Pages PDF
Abstract
Inlet cooling is effective for mitigating the decrease in gas turbine performance during hot and humid summer periods when electrical power demands peak, and steam injection, using steam raised from the turbine exhaust gases in a heat recovery steam generator, is an effective technique for utilizing the hot turbine exhaust gases. Biomass gasification can be integrated with a gas turbine cycle to provide efficient, clean power generation. In the present paper, a gas turbine cycle with fog cooling and steam injection, and integrated with biomass gasification, is proposed and analyzed with energy, exergy and exergoeconomic analyses. The thermodynamic analyses show that increasing the compressor pressure ratio and the gas turbine inlet temperature raises the energy and exergy efficiencies. On the component level, the gas turbine is determined to have the highest exergy efficiency and the combustor the lowest. The exergoeconomic analysis reveals that the proposed cycle has a lower total unit product cost than a similar plant fired by natural gas. However, the relative cost difference and exergoeconomic factor is higher for the proposed cycle than the natural gas fired plant, indicating that the proposed cycle is more costly for producing electricity despite its lower product cost and environmental impact.
Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , , ,