Article ID Journal Published Year Pages File Type
6767740 Renewable Energy 2015 10 Pages PDF
Abstract
This work investigated the potential of shea butter oil (SBO) as feedstock for synthesis of biodiesel. Due to high free fatty acid (FFA) of SBO used, response surface methodology (RSM) was employed to model and optimize the pretreatment step while its conversion to biodiesel was modeled and optimized using RSM and artificial neural network (ANN). The acid value of the SBO was reduced to 1.19 mg KOH/g with oil/methanol molar ratio of 3.3, H2SO4 of 0.15 v/v, time of 60 min and temperature of 45 °C. Optimum values predicted for the transesterification reaction by RSM were temperature of 90 °C, KOH of 0.6 w/v, oil/methanol molar ratio of 3.5, and time of 30 min with actual shea butter oil biodiesel (SBOB) yield of 99.65% (w/w). ANN combined with generic algorithm gave the optimal condition as temperature of 82 °C, KOH of 0.40 w/v, oil/methanol molar ratio of 2.62 and time of 30 min with actual SBOB yield of 99.94% (w/w). Coefficient of determination (R2) and absolute average deviation (AAD) of the models were 0.9923, 0.83% (RSM) and 0.9991, 0.15% (ANN), which demonstrated that ANN model was more efficient than RSM model. Properties of SBOB produced were within biodiesel standard specifications.
Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , ,