Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6770520 | Soil Dynamics and Earthquake Engineering | 2018 | 19 Pages |
Abstract
Base-isolated structures may be subjected to severe seismic demand in the superstructure and/or in the isolation system at sites located near an active fault. Forward directivity effects with long-period horizontal pulses in the fault-normal velocity signals are the main cause of this behaviour. However, recent studies have identified pulses in arbitrary orientations along with false-positive classification of pulse-type ground motions. The aim of the present work is to evaluate the reliability of elastomeric (i.e. high-damping-laminated-rubber bearings, HDLRBs) and sliding (i.e. curved surface sliding bearings, CSSBs) base-isolation systems for the seismic retrofitting of in-plan irregular buildings located in the near-fault area. To this end, a five-storey reinforced concrete (r.c.) framed structure, with an asymmetric-plan and bays of different length, is chosen from benchmark structures of the Re.L.U.I.S. project. Attention is focused on the pulse-type and non-pulse-type nature of near-fault earthquakes and moderately-soft and soft subsoil conditions. First, a comparison between algorithms based on wavelet signal processing, that can identify pulses at a single (e.g. fault-normal) or arbitrary orientation in multicomponent near-fault ground motions, is carried out to classify records of recent events in central Italy and worldwide. Then, nonlinear seismic analysis of the fixed-base and base-isolated test structures is performed by using a lumped plasticity model to describe the inelastic behaviour of the r.c. frame members. Nonlinear force-displacement laws are considered for the HDLRBs and CSSBs, including coupled bi-directional motions in the horizontal directions and coupling of vertical and horizontal motions.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Geotechnical Engineering and Engineering Geology
Authors
Fabio Mazza,