Article ID Journal Published Year Pages File Type
6772265 Soil Dynamics and Earthquake Engineering 2014 12 Pages PDF
Abstract
A new model named double-shear model based on Pasternak foundation and Timoshenko beam theory is developed to evaluate the effect of a forced harmonic vibration pile to its adjacent pile in multilayered soil medium. The double-shear model takes into account the shear deformation and the rotational inertia of piles as well as the shear deformation of soil. The piles are simulated as Timoshenko beams, which are embedded in a layered Pasternak foundation. The differential equation of transverse vibration for a pile is solved by the initial parameter method. The dynamic interaction factors for the layered soil medium are obtained by the transfer matrix method. The formulation and the implementation have been verified by means of several examples. The individual shear effects of soil and piles on the interaction factors are evaluated through a parametric study. Compared to Winkler model with Euler beam, the present model gives much better results for the dynamic interaction of piles embedded in stiff soil with small slenderness ratios. Finally, the effect of a forced long pile to a short pile embedded in multilayered soil medium is studied in detail.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
, , ,