Article ID Journal Published Year Pages File Type
6772561 Soil Dynamics and Earthquake Engineering 2014 14 Pages PDF
Abstract
In this study, a series of centrifuge tests, modeling reverse fault rupture with 60° dip angle, were conducted in a dry sandy soil with a tunnel embedded in the soil layer. The test results showed that the tunnel and soil responses depended on the tunnel position, soil relative density and tunnel rigidity. Tunnels appeared be able to deviate the fault rupture path, while this deviation may be associated with significant rotation and displacement of the tunnel. However, a deeper tunnel was able to diffuse the shear deformation to a wider zone with an unsmooth surface displacement which may cause severe damage to the surface structures. Finally, the tunnel rotation, the location of the fault outcropping, the vertical displacement of the ground surface, the effect of tunnel rigidity on fault rupture path and surface displacement and the effect of soil relative density on fault-tunnel interaction were reported and discussed in this study.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
, , , ,