Article ID Journal Published Year Pages File Type
6773775 Soils and Foundations 2018 14 Pages PDF
Abstract
A geotechnical design and optimization procedure for piled-raft foundations to support tall wind turbines in clayey and sandy soil are presented in this paper. From the conventional geotechnical design, it was found that the differential settlement controlled the final design and was considered as the response of concern in the optimization procedure. A parametric study was subsequently conducted to examine the effect of the soil shear strength parameters and wind speed (random variables) on the design parameters (number and length of piles and radius of raft). Finally, a robust design optimization procedure was conducted using a Genetic Algorithm coupled with a Monte Carlo simulation considering the total cost of the foundation and the standard deviation of differential settlement as the objectives. This procedure resulted in a set of acceptable designs forming a Pareto front which can be readily used to select the best design for given performance requirements and cost limitations.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
, , ,