Article ID Journal Published Year Pages File Type
6777615 Thin-Walled Structures 2018 12 Pages PDF
Abstract
This paper describes experimental and numerical investigations of the hysteretic behaviour of the corrugated steel plate shear wall (CSPSW). Two single-bay, two-storey CSPSWs without elastic buckling were cyclically tested. A numerical model was developed to simulate the experimental results. The inelastic buckling capacity and failure mode of the corrugated steel plate shear wall were examined. The results revealed that through the proper design of the corrugation parameters, the corrugated steel plate shear wall could avoid elastic buckling, and this shear wall had high initial stiffness buckling, strength, energy dissipation and ductility. In addition, the feasibility of the simultaneous construction of corrugated steel plates and frames was discussed. Finally, the serviceability of the existing design methods for corrugated steel plate shear walls was examined, which proved that the plate-frame interaction model could predict the shear strength and initial stiffness of the corrugated steel plate shear walls with good accuracy.
Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,