Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
67789 | Journal of Molecular Catalysis A: Chemical | 2007 | 6 Pages |
The mechanism of methylpyrazine ammoxidation on a vanadia–titania catalyst has been studied by in situ FTIR spectroscopy. The structure of surface intermediates has been identified and the sequence of their transformation in the temperature range of 150–230 °C has been ascertained. The interaction of methylpyrazine with catalyst surface includes a consecutive transformation of coordinatively bound methylpyrazine into oxygenated surface compounds, viz., an aldehyde-like complex and an asymmetrical carboxylate. The main reaction product, amidopyrazine, is formed through the interaction of the surface oxyintermediates with adsorbed ammonia species.
Graphical abstractThe mechanism of methylpyrazine ammoxidation on a vanadia–titania catalyst has been studied by in situ FTIR spectroscopy. The structure of surface intermediates has been identified and the sequence of their transformation in the temperature range of 150–230 °C has been ascertained. Figure optionsDownload full-size imageDownload as PowerPoint slide