Article ID Journal Published Year Pages File Type
6783950 Tunnelling and Underground Space Technology 2015 12 Pages PDF
Abstract
For a pipe jacking construction, reducing the soil-pipe interface friction and providing enough jacking force are the most common approach to optimize the construction efficiency. In practice, jacking force is generally estimated by various empirical equations. However, the estimations of empirical equations frequently deviate from the reality. In this study, a model coupling finite element method and a displacement control method were applied to estimate the required jacking force in pipe jacking. Two cases were examined from Central Taiwan, where the primary geological foundation composed of gravel formations. Case A pertained to pipe jacking construction during which sewage pipes with a diameter of 2.4 m were utilized. The monitoring data from this case were used to establish the jacking force estimation model. The jacking force history observed in Case B, in which sewage pipes of 1.0 m diameter were used, was compared with those obtained by the developed model to demonstrate the applicability of the model. The results suggested the developed model can estimate the jacking force with a better accuracy towards the middle and the final stage of the pipe jacking process.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
, ,