Article ID Journal Published Year Pages File Type
678545 Biomass and Bioenergy 2009 12 Pages PDF
Abstract

In this study, 14 solid-fuel household cook stove and fuel combinations, including 10 stoves and four fuels, were tested for performance and pollutant emissions using a WBT (Water Boiling Test) protocol. Results from the testing showed that some stoves currently used in the field have improved fuel efficiency and lower pollutant emissions compared with traditional cooking methods. Stoves with smaller-mass components exposed to the heat of fuel combustion tended to take lesser time to boil, have better fuel efficiency, and lower pollutant emissions. The challenge is to design stoves with smaller-mass components that also have acceptable durability, affordable cost, and meet user needs. Results from this study provide stove performance and emissions information to practitioners disseminating stove technology in the field. This information may be useful for improving the design of existing stoves and for developing new stove designs. Comparison of results between laboratories shows that results can be replicated between labs when the same stove and fuel are tested using the WBT protocol. Recommendations were provided to improve the ability to replicate results between labs. Implications of better solid-fuel cook stoves are improved human health, reduced fuel use, reduced deforestation, and reduced global climate change.

Related Topics
Physical Sciences and Engineering Chemical Engineering Process Chemistry and Technology
Authors
, ,