Article ID Journal Published Year Pages File Type
679497 Bioresource Technology 2015 8 Pages PDF
Abstract
Escherichia coli expressing the Lactobacillus brevis dhaB1B2B3 and dhaR1R2 clusters and Pseudomonas aeruginosa aldhH was engineered to produce 3-HP from glucose and xylose via the glycerol biosynthetic pathway. Glycerol, a key precursor for 3-HP biosynthesis was produced by overexpression of the GPD1 and GPP2 genes from Saccharomyces cerevisiae. For relief of carbon catabolite repression, deletion of the chromosomal ptsG gene and overexpression of the endogenous xylR gene rendered engineered E. coli JHS01300/pCPaGGRm to utilize glucose and xylose simultaneously and to produce glycerol at 0.48 g/g yield and 0.35 g/L-h productivity. Finally, engineered E. coli JHS01300/pELDRR + pCPaGGRm produced 29.4 g/L of 3-HP with 0.54 g/L-h productivity and 0.36 g/g yield in a sugar-limited fed-batch fermentation. It was concluded that dual modulation of sugar transport and glycerol biosynthesis is a promising strategy for efficient conversion of glucose and xylose to 3-HP.
Related Topics
Physical Sciences and Engineering Chemical Engineering Process Chemistry and Technology
Authors
, , , , ,