Article ID Journal Published Year Pages File Type
679895 Bioresource Technology 2015 17 Pages PDF
Abstract
Effect of Fe3O4 nanoparticles (NPs) and Fe3O4/Alginate nanocomposites (NCs) have been investigated on production and thermostability of crude cellulase enzyme system obtained by newly isolated thermotolerant Aspergillus fumigatus AA001. Fe3O4 NPs and Fe3O4/Alginate NCs have been synthesized by co-precipitation method and characterized through various techniques. In presence of Fe3O4 NPs and Fe3O4/Alginate NCs, filter paper activity of crude cellulase was increased about 35% and 40%, respectively in 72 h as compared to control. Fe3O4/Alginate NCs treated crude enzyme was thermally stable up to 8 h at 70 °C and retained 56% of its relative activity whereas; control samples could retain only 19%. Further, the hydrolysis of 1.0% alkali treated rice straw using Fe3O4/Alginate NCs treated cellulase gave much higher sugar productivity than control at optimal condition. These findings may be utilized in the area of biofuels and biowaste management.
Related Topics
Physical Sciences and Engineering Chemical Engineering Process Chemistry and Technology
Authors
, , , , ,