Article ID Journal Published Year Pages File Type
6803764 Neurobiology of Aging 2015 11 Pages PDF
Abstract
Arrested autophagy may contribute to the pathogenesis of Alzheimer's disease. Because we found that chloroquine (CQ) causes arrested autophagy but clioquinol (ClioQ), a zinc ionophore, activates autophagic flux, in the present study, we examined whether ClioQ can overcome arrested autophagy induced by CQ or mutant presenilin-1 (mPS1). CQ induced vacuole formation and cell death in adult retinal pigment epithelial (ARPE-19) cells, but co-treatment with ClioQ attenuated CQ-associated toxicity in a zinc-dependent manner. Increases in lysosome dilation and blockage of autophagic flux by CQ were also markedly attenuated by ClioQ treatment. Interestingly, CQ increased lysosomal pH in amyloid precursor protein (APP)/mPS1-expressing Chinese hamster ovary 7WΔE9 (CHO-7WΔE9) cell line, and ClioQ partially re-acidified lysosomes. Furthermore, accumulation of amyloid-β (Aβ) oligomers in CHO-7WΔE9 cells was markedly attenuated by ClioQ. Moreover, intracellular accumulation of exogenously applied fluorescein isothiocyanate-conjugated Aβ1-42 was also increased by CQ but was returned to control levels by ClioQ. These results suggest that modulation of lysosomal functions by manipulating lysosomal zinc levels may be a useful strategy for clearing intracellular Aβ oligomers.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Ageing
Authors
, , , , ,