Article ID Journal Published Year Pages File Type
6805780 Neurobiology of Aging 2014 12 Pages PDF
Abstract
Plasma membrane cellular prion protein (PrPC) is a high-affinity receptor for toxic soluble amyloid-β (Aβ) oligomers that mediates synaptic dysfunction. Secreted forms of PrPC resulting from PrPC α-cleavage (PrPN1) or shedding (shed PrPC) display neuroprotective activity in neuronal cultures and in mouse models of Aβ-induced neuronal dysfunction. In vitro, recombinant PrPN1 and PrP inhibit Aβ fibrillization. However, the mechanism by which PrPN1 and shed PrPC neutralize Aβ oligomers is unclear, and evidence of such neuroprotective activity in Alzheimer's disease (AD) patients is lacking. Here, we show that PrPN1 association with Aβ causes a conformational change resulting in the formation of amorphous and insoluble aggregates that are not compatible with the assembly of Aβs. Using postmortem brain tissues of AD patients, we were able to coimmunoprecipitate Aβ with PrPC molecules and observed a coaggregation of Aβ and PrPN1 in the guanidine-extractable fraction presumably representing insoluble amyloid plaques. Furthermore, PrPC α-cleavage is increased in AD brains, and we noticed a significant positive correlation between the levels of α-cleavage and of guanidine-extractable Aβ. These data strongly support the hypothesis that PrPC α-cleavage is an endogenous neuroprotective mechanism in AD and support the development of PrPC-derived peptides as therapeutic molecules for AD.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Ageing
Authors
, , , , ,