Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6808031 | Neurobiology of Aging | 2013 | 10 Pages |
Abstract
A number of neurological diseases are caused by mutations of RNA metabolism-related genes. A complicating issue is that whether under- or overfunction of such genes is responsible for the phenotype. Polyglutamine tract binding protein-1, a causative gene for X-linked mental retardation, is also involved in RNA metabolism, and both mutation and duplication of the gene were reported in human patients. In this study, we first report a novel phenotype of dPQBP1 (drosophila homolog of Polyglutamine tract binding protein-1)-mutant flies, lifespan shortening. We next address the gene dose-phenotype relationship in lifespan shortening and in learning disability, a previously described phenotype. The 2 phenotypes are rescued by dPQBP1 but in different dose-phenotype relationships. Either insufficient or excessive expression of dPQBP1 does not recover lifespan, while excessive expression recovers learning ability. We finally address the mechanism of lifespan shortening. Tissue-specific expression of dPQBP1-RNA interference construct reveals both neural and nonneural dPQBP1 contribute to the lifespan, while the latter has a dominant effect. Gene expression profiling suggested retinophilin/MORN repeat containing 4, a gene promoting axonal degeneration, to contribute to lifespan shortening by neural dPQBP1. Systems biology analysis of the gene expression profiles revealed indirect influence of dPQBP1 on insulin-like growth factor 1, insulin receptor, and peroxisome proliferator-activated receptorα/γ signaling pathways in nonneural tissues. Collectively, given that dPQBP1 affects multiple pathways in different dose-dependent and tissue-specific manners, dPQBP1 at a restricted expression level is needed for the best longevity.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Ageing
Authors
Takuya Tamura, Masaki Sone, Yoko Nakamura, Teppei Shimamura, Seiya Imoto, Satoru Miyano, Hitoshi Okazawa,