Article ID Journal Published Year Pages File Type
6808121 Neurobiology of Aging 2012 10 Pages PDF
Abstract
Our aim was to identify the best diagnostic test sequence for predicting Alzheimer's disease (AD)-type dementia in subjects with mild cognitive impairment (MCI) using cerebrospinal fluid (CSF) and magnetic resonance imaging (MRI) biomarkers. We selected 153 subjects with mild cognitive impairment from a multicenter memory clinic-based cohort. We tested the CSF beta amyloid (Aβ)1-42/tau ratio using enzyme-linked immunosorbent assay (ELISA) and hippocampal volumes (HCVs) using the atlas-based learning embeddings for atlas propagation (LEAP) method. Outcome measure was progression to AD-type dementia in 2 years. At follow-up, 48 (31%) subjects converted to AD-type dementia. In multivariable analyses, CSF Aβ1-42/tau and HCV predicted AD-type dementia regardless of apolipoprotein E (APOE) genotype and cognitive scores. Test sequence analyses showed that CSF Aβ1-42/tau increased predictive accuracy in subjects with normal HCV (p < 0.001) and abnormal HCV (p = 0.025). HCV increased predictive accuracy only in subjects with normal CSF Aβ1-42/tau (p = 0.014). Slope analyses for annual cognitive decline yielded similar results. For selection of subjects for a prodromal AD trial, the best balance between sample size and number of subjects needed to screen was obtained with CSF markers. These results provide further support for the use of CSF and magnetic resonance imaging biomarkers to identify prodromal AD.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Ageing
Authors
, , , , , , , , , , , , , , ,