Article ID Journal Published Year Pages File Type
6812922 Psychiatry Research 2016 7 Pages PDF
Abstract
Cognitive impairment is a common adverse effect of electroconvulsive therapy (ECT) during treatment for severe depression. Dexmedetomidine (DEX), a sedative-anesthetic drug, is used to treat post-ECT agitation. However, it is not known if DEX can protect against ECT-induced cognitive impairments. To address this, we used chronic unpredictable mild stress (CUMS) to establish a model of depression for ECT treatment. Our Morris water maze and sucrose preference test results suggest that DEX alleviates ECT-induced learning and memory impairments without altering the antidepressant efficacy of ECT. To further investigate the underlying mechanisms of DEX, hippocampal expression of NR2B, p-ERK/ERK, p-CREB/CREB, and BDNF were quantified by western blotting. These results show that DEX suppresses over-activation of NR2B and enhances phosphorylation of ERK1/2 in the hippocampus of ECT-treated depressed rats. Furthermore, DEX had no significant effect on ECT-induced increases in p-CREB and BDNF. Overall, our findings suggest that DEX ameliorates ECT-induced learning and memory impairments in depressed rats via the NR2B-ERK signaling cascade. Moreover, CREB/BDNF seems not appear to participate in the cognitive protective mechanisms of DEX during ECT treatment.
Related Topics
Life Sciences Neuroscience Biological Psychiatry
Authors
, , , , , , , , , , ,