Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6814516 | Psychiatry Research | 2014 | 8 Pages |
Abstract
Previous reports indicate that among healthy individuals low aerobic fitness (AF) and high body-mass index (BMI) predict poor neurocognition and daily-functioning. It is unknown whether these associations extend to disorders characterized by poor neurocognition, such as schizophrenia. Therefore, we compared AF and BMI in individuals with schizophrenia and non-clinical controls, and then within the schizophrenia group we examined the links between AF, BMI, neurocognition and daily-functioning. Thirty-two individuals with schizophrenia and 64 gender- and age-matched controls completed assessments of AF (indexed by VO2max) and BMI. The former also completed measures of neurocognition, daily-functioning and physical activity. The schizophrenia group displayed significantly lower AF and higher BMI. In the schizophrenia group, AF was significantly correlated with overall neurocognition (r=0.57), along with executive functioning, working memory, social cognition, and processing speed. A hierarchical regression analysis indicated that AF accounted for 22% of the neurocognition variance. Furthermore, AF was significantly correlated with overall daily-functioning (r=0.46). In contrast, BMI displayed significant inverse correlations with neurocognition, but no associations to daily-functioning. AF was significantly correlated physical activity. The authors discuss the potential use of AF-enhancing interventions to improve neurocognitive and daily-functioning in schizophrenia, along with putative neurobiological mechanisms underlying these links, including Brain-Derived Neurotrophic Factor.
Related Topics
Life Sciences
Neuroscience
Biological Psychiatry
Authors
David Kimhy, Julia Vakhrusheva, Matthew N. Bartels, Hilary F. Armstrong, Jacob S. Ballon, Samira Khan, Rachel W. Chang, Marie C. Hansen, Lindsey Ayanruoh, Edward E. Smith, Richard P. Sloan,