Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
681836 | Bioresource Technology | 2011 | 6 Pages |
Building on our laboratory-scale optimization, oxalic acid was used to pretreat corncobs on the pilot-scale. The hydrolysate obtained after washing the pretreated biomass contained 32.55 g/l of xylose, 2.74 g/l of glucose and low concentrations of inhibitors. Ethanol production, using Scheffersomyces stipitis, from this hydrolysate was 10.3 g/l, which approached the predicted value of 11.9 g/l. Diafiltration using a membrane system effectively reduced acetic acid in the hydrolysate, which increased the fermentation rate. The hemicellulose content of the recovered solids decreased from 27.86% before pretreatment to only 6.76% after pretreatment. Most of the cellulose remained in the pretreated biomass. The highest ethanol production after simultaneous saccharification and fermentation (SSF) of washed biomass with S. stipitis was 21.1 g/l.
► We scaled-up pretreatment for bioethanol production based on statistical analysis. ► We compared the experimental results with those of the laboratory-scale pretreatment. ► Ethanol production was similar to the expected date from laboratory scale.