Article ID Journal Published Year Pages File Type
681939 Bioresource Technology 2011 9 Pages PDF
Abstract

The continuous operation of a newly developed methane fermentation reactor, which requires no electricity for the agitation of the fermentation liquid was investigated, and the extent of the biological desulfurization was monitored. Inside the reactor, the continual change in the liquid level and the self-agitation, occurring between 5 and 16 times every day, distributed the organic load near the inlet port of the reactor, as well as providing a nutrient supply to the hydrogen sulfide oxidizing bacteria. At different CODCr loading rates (5, 7, 10 kg m3 d−1), the reactor achieved a biogas production yield of 0.72–0.82 m3 g−1-TS, a CODCr reduction of 79.4–85.5% and an average of 99% hydrogen sulfide removal. This investigation demonstrated that the self-agitated reactor is comparable in digestion performance to the completely stirred tank reactor (CSTR) investigated in a previous study, and that the desulfurization performance was significantly enhanced compared to the CSTR.

Related Topics
Physical Sciences and Engineering Chemical Engineering Process Chemistry and Technology
Authors
, ,