Article ID Journal Published Year Pages File Type
682995 Bioresource Technology 2010 7 Pages PDF
Abstract
In this study, a plasmatron reactor was used for gasifying the waste of distillers grains at different temperatures (773, 873, 973 K) and water flow rates (1, 2, 3 mL min−1), which were heated to produce steam. Among all the gas products, syngas was the major component (88.5 wt.% or 94.66 vol.%) with temperatures yielding maximum concentrations at 873 K with a relatively high reaction rate. The maximum concentrations regarding gaseous production occurring times are all below 1 min. With the increase of steam, the recovery mass yield of syngas also increases from 34.14 to 45.47 ∼ 54.66 wt.% at 873 K. Water-gas reactions and steam-methane reforming reactions advance the production of syngas with the increase of steam. Furthermore, the water-shift reaction also increases in the context of steam gasification which leads to the decrease of CO2 at the same time.
Related Topics
Physical Sciences and Engineering Chemical Engineering Process Chemistry and Technology
Authors
, , ,