Article ID Journal Published Year Pages File Type
683320 Bioresource Technology 2009 6 Pages PDF
Abstract

The biocatalytic reduction of 4-(trimethylsilyl)-3-butyn-2-one to enantiopure (R)-4-(trimethylsilyl)-3-butyn-2-ol was successfully conducted with high enantioselectivity using immobilized whole cells of a novel strain Acetobacter sp. CCTCC M209061, newly isolated from kefir. Compared with other microorganisms that were investigated, Acetobacter sp. CCTCC M209061 was shown to be more effective for the bioreduction reaction, and afforded much higher yield and product enantiomeric excess (e.e.). The optimal buffer pH, co-substrate concentration, reaction temperature, substrate concentration and shaking rate were 5.0, 130.6 mM, 30 °C, 6.0 mM and 180 r/min, respectively. Under the optimized conditions, the maximum yield and the product e.e. were 71% and >99%, respectively, which are much higher than those reported previously. Additionally, the established biocatalytic system proved to be efficient for the bioreduction of acetyltrimethylsilane to (R)-1-trimethylsilylethanol with excellent yield and product e.e. The immobilized cells manifested a good operational stability under the above reaction conditions since they retained 70% of their catalytic activity after ten cycles of use.

Related Topics
Physical Sciences and Engineering Chemical Engineering Process Chemistry and Technology
Authors
, , ,