Article ID Journal Published Year Pages File Type
683744 Bioresource Technology 2009 7 Pages PDF
Abstract

A novel continuous reactor process has been developed for the production of biodiesel from fats and oils. The key feature of the process is its ability to operate continuously with a high reaction rate, potentially requiring less post reaction cleaning and product/reactant separation than currently established processes. This was achieved by atomising the heated oil/fat and then spraying it into a reaction chamber filled with methanol vapor in a counter current flow arrangement. This allows the continuous separation of product and the excess methanol stream in the reactor. The overall conversion based on a single cycle of this process has been between 50% and 96% of the feed stock materials. Conversions of 94–96% were achieved while operating with 5–7 g of sodium methoxide/L of methanol at methanol flow rate of 17.2 L/h and oil flow rate of 10 L/h. Additional variations in the reactant stoichiometry (i.e. reactant flow rates), catalyst type/concentration, and reaction temperature on the overall product conversion were investigated.

Related Topics
Physical Sciences and Engineering Chemical Engineering Process Chemistry and Technology
Authors
, ,