Article ID Journal Published Year Pages File Type
6842000 The Internet and Higher Education 2016 36 Pages PDF
Abstract
Blended learning (BL) is recognized as one of the major trends in higher education today. To identify how BL has been actually adopted, this study employed a data-driven approach instead of model-driven methods. Latent Class Analysis method as a clustering approach of educational data mining was employed to extract common activity features of 612 courses in a large private university located in South Korea by using online behavior data tracked from Learning Management System and institution's course database. Four unique subtypes were identified. Approximately 50% of the courses manifested inactive utilization of LMS or immature stage of blended learning implementation, which is labeled as Type I. Other subtypes included Type C - Communication or Collaboration (24.3%), Type D - Delivery or Discussion (18.0%), and Type S - Sharing or Submission (7.2%). We discussed the implications of BL based on data-driven decisions to provide strategic institutional initiatives.
Related Topics
Social Sciences and Humanities Social Sciences Education
Authors
, , ,